Kamis, 29 Desember 2016

Hakekat dari Ilmu Matematika

Hakekat dari Ilmu Matematika
Secara tradisional, matematika telah dipandang sebagai paradigma pengetahuan tertentu. Euclid mendirikan struktur logika yang luar biasa hampir 2.500 tahun lalu, yang sampai akhir abad kesembilan belas diambil sebagai paradigm untuk mendirikan kebenaran dan kepastian. Newton menggunakan unsur-unsur logika dalam bukunya Principia, dan Spinoza juga menggunakannya dalam bukunya Ethics, untuk memperkuat klaim mereka menjelaskan kebenaran secara sistematis. Matematika telah lama dianggap sebagai sumber pengetahuan tertentu yang paling dikenal umat manusia. Sebelum menanyakan hakikat dari ilmu matematika, pertama-tama perlu mempertimbangkan hakikat ilmu pengetahuan pada umumnya. Jadi kita mulai dengan pertanyaan, apa itu ilmu pengetahuan? pertanyaan tentang apa itu ilmu pengetahuan merupakan jantung filsafat, dan pengetahuan matematika memainkan peran khusus. Jawaban filosofis standar untuk pertanyaan ini adalah bahwa pengetahuan adalah kepercayaan yang dibenarkan. Lebih tepatnya, bahwa pengetahuan proposisional terdiri dari proposisi yang diterima (yaitu, dipercaya), asalkan ada dasar yang memadai untuk menegaskannya
(Sheffler,; 1965; Chisholm, 1966; Woozley, 1949).

Pengetahuan diklasifikasikan berdasarkan pada pernyataan tersebut.
Pengetahuanapriori terdiri dari proposisi hanya berdasarkan alasan saja, tanpa pengamatan dari dunia. Alasannya terdiri dari penggunaan logika deduktif dan makna istilah, biasanya dapat ditemukan dalam definisi. Sebaliknya, empiris atau pengetahuan posteriori terdiri dari proposisi yang menjelaskan berdasarkan pengalaman, yaitu, dengan pengamatan dunia (Woozley, 1949). Pengetahuan matematika diklasifikasikan sebagai pengetahuan priori, karena terdiri dari proposisi yang menjelaskan atas dasar alasan saja. Alasannya, termasuk logika deduktif dan yang digunakan sebagai definisi, hubungannya dengan aksioma matematika atau postulat, adalah sebagai dasar untuk menyimpulkan pengetahuan matematika. Dengan demikian, dapat dikatakanbahwa pengetahuan dasar matematika yaitu dasar untuk menyatakan kebenaran proposisi matematika, yang terdiri dari bukti deduktif. Bukti dari proposisi matematika adalah proposisi terbatas yang memenuhi syarat cukup. Setiap pernyataan adalah aksioma yang berdasarkan seperangkat aksioma sebelumnya, atau diperoleh dengan aturan penarikan kesimpulan dari satu atau lebih pernyataan yang telah ada sebelumnya. Istilah aksioma dipahami secara luas, yang merupakan pernyataan yang diakui menjadi bukti tanpa demonstrasi. Selain aksioma yaitu dalil-dalil dan definisi.

Tidak ada komentar:

Posting Komentar